1,315 research outputs found

    Fermi-Frenet coordinates for space-like curves

    Full text link
    We generalize Fermi coordinates, which correspond to an adapted set of coordinates describing the vicinity of an observer's worldline, to the worldsheet of an arbitrary spatial curve in a static spacetime. The spatial coordinate axes are fixed using a covariant Frenet triad so that the metric can be expressed using the curvature and torsion of the spatial curve. As an application of Fermi-Frenet coordinates, we show that they allow covariant inertial forces to be expressed in a simple and physically intuitive way.Comment: 7 page

    Active swarms on a sphere

    Get PDF
    Here we show that coupling to curvature has profound effects on collective motion in active systems, leading to patterns not observed in flat space. Biological examples of such active motion in curved environments are numerous: curvature and tissue folding are crucial during gastrulation, epithelial and endothelial cells move on constantly growing, curved crypts and vili in the gut, and the mammalian corneal epithelium grows in a steady-state vortex pattern. On the physics side, droplets coated with actively driven microtubule bundles show active nematic patterns. We study a model of self-propelled particles with polar alignment on a sphere. Hallmarks of these motion patterns are a polar vortex and a circulating band arising due to the incompatibility between spherical topology and uniform motion - a consequence of the hairy ball theorem. We present analytical results showing that frustration due to curvature leads to stable elastic distortions storing energy in the band.Comment: 5 pages, 4 figures plus Supporting Informatio

    Sistemas de produção de caprinos leiteiros e perfil de produtores associados às cooperativas de Jussara e Valente na Bahia.

    Get PDF
    Resumo: Este trabalho foi realizado com o objetivo de caracterizar os sistemas de produção aplicados a caprinos leiteiros criados por produtores associados às cooperativas de Jussara e Valente; na Bahia. Utilizaram-se dados retirados de entrevistas com 45 produtores que utilizavam o leite para consumo próprio ou venda; realizando-se estatística descritiva para descrever a natureza das variáveis estudadas. As propriedades possuíram; como mediana; 20 hectares. A maior utilização da terra correspondeu à forragem cultivada buffel (Cenchrus ciliaris) e à caatinga bruta. O rebanho de caprinos constou de 28 cabeças e a mediana de cabras em lactação foi de oito cabeças por dia. Em 42% das propriedades; os animais se alimentavam em áreas de terras devolutas. O sistema de produção animal pôde ser caracterizado como um sistema misto. A mediana de produção obtida foi de cinco litros ao dia e a mediana da produção comercializada mensalmente foi de 250 litros. Apenas 31;11% dos produtores faziam alguma anotação com relação ao seu rebanho. Dos produtores; 20% realizavam monta natural controlada e 11;11% realizavam estação de monta. Os reprodutores mais utilizados foram os SRD; sendo que 46;66% dos produtores os escolhiam sem objetivos de melhorar alguma característica. Com relação às matrizes; a mediana de partos por cabra por ano foi de um; sendo que 55;56% dos produtores descartavam as matrizes quando as mesmas apresentavam problemas produtivos e reprodutivos e somente 33;33% observavam alguma característica ao escolherem a matriz. Observou-se uma grande variabilidade dos fatores de produção e comercialização.Dissertação (Mestrado em Produção Animal) - Universidade Federal de Minas Gerais, Belo Horizonte. Orientador: Iran Borges (UFMG); Co-orientador: Evandro Vasconcelos Holanda, Embrapa Caprinos (CNPC)

    Phase diagram of a model for a binary mixture of nematic molecules on a Bethe lattice

    Full text link
    We investigate the phase diagram of a discrete version of the Maier-Saupe model with the inclusion of additional degrees of freedom to mimic a distribution of rodlike and disklike molecules. Solutions of this problem on a Bethe lattice come from the analysis of the fixed points of a set of nonlinear recursion relations. Besides the fixed points associated with isotropic and uniaxial nematic structures, there is also a fixed point associated with a biaxial nematic structure. Due to the existence of large overlaps of the stability regions, we resorted to a scheme to calculate the free energy of these structures deep in the interior of a large Cayley tree. Both thermodynamic and dynamic-stability analyses rule out the presence of a biaxial phase, in qualitative agreement with previous mean-field results

    Magnetovac Cylinder to Magnetovac Torus

    Get PDF
    A method for mapping known cylindrical magnetovac solutions to solutions in torus coordinates is developed. Identification of the cylinder ends changes topology from R1 x S1 to S1 x S1. An analytic Einstein-Maxwell solution for a toroidal magnetic field in tori is presented. The toroidal interior is matched to an asymptotically flat vacuum exterior, connected by an Israel boundary layer.Comment: to appear in Class. Quant. Gra

    Circular Orbits in Einstein-Gauss-Bonnet Gravity

    Get PDF
    The stability under radial and vertical perturbations of circular orbits associated to particles orbiting a spherically symmetric center of attraction is study in the context of the n-dimensional: Newtonian theory of gravitation, Einstein's general relativity, and Einstein-Gauss-Bonnet theory of gravitation. The presence of a cosmological constant is also considered. We find that this constant as well as the Gauss-Bonnet coupling constant are crucial to have stability for n>4n>4.Comment: 11 pages, 4 figs, RevTex, Phys. Rev. D, in pres

    On the embedding of spacetime in five-dimensional Weyl spaces

    Full text link
    We revisit Weyl geometry in the context of recent higher-dimensional theories of spacetime. After introducing the Weyl theory in a modern geometrical language we present some results that represent extensions of Riemannian theorems. We consider the theory of local embeddings and submanifolds in the context of Weyl geometries and show how a Riemannian spacetime may be locally and isometrically embedded in a Weyl bulk. We discuss the problem of classical confinement and the stability of motion of particles and photons in the neighbourhood of branes for the case when the Weyl bulk has the geometry of a warped product space. We show how the confinement and stability properties of geodesics near the brane may be affected by the Weyl field. We construct a classical analogue of quantum confinement inspired in theoretical-field models by considering a Weyl scalar field which depends only on the extra coordinate.Comment: 16 pages, new title and references adde

    Riemannian Geometry of Noncommutative Surfaces

    Get PDF
    A Riemannian geometry of noncommutative n-dimensional surfaces is developed as a first step towards the construction of a consistent noncommutative gravitational theory. Historically, as well, Riemannian geometry was recognized to be the underlying structure of Einstein's theory of general relativity and led to further developments of the latter. The notions of metric and connections on such noncommutative surfaces are introduced and it is shown that the connections are metric-compatible, giving rise to the corresponding Riemann curvature. The latter also satisfies the noncommutative analogue of the first and second Bianchi identities. As examples, noncommutative analogues of the sphere, torus and hyperboloid are studied in detail. The problem of covariance under appropriately defined general coordinate transformations is also discussed and commented on as compared with other treatments.Comment: 28 pages, some clarifications, examples and references added, version to appear in J. Math. Phy

    Minimal resonances in annular non-Euclidean strips

    Get PDF
    Differential growth processes play a prominent role in shaping leaves and biological tissues. Using both analytical and numerical calculations, we consider the shapes of closed, elastic strips which have been subjected to an inhomogeneous pattern of swelling. The stretching and bending energies of a closed strip are frustrated by compatibility constraints between the curvatures and metric of the strip. To analyze this frustration, we study the class of "conical" closed strips with a prescribed metric tensor on their center line. The resulting strip shapes can be classified according to their number of wrinkles and the prescribed pattern of swelling. We use this class of strips as a variational ansatz to obtain the minimal energy shapes of closed strips and find excellent agreement with the results of a numerical bead-spring model. Within this class of strips, we derive a condition under which a strip can have vanishing mean curvature along the center line.Comment: 14 pages, 13 figures. Published version. Updated references and added 2 figure

    Statistical models of mixtures with a biaxial nematic phase

    Full text link
    We consider a simple Maier-Saupe statistical model with the inclusion of disorder degrees of freedom to mimic the phase diagram of a mixture of rod-like and disc-like molecules. A quenched distribution of shapes leads to the existence of a stable biaxial nematic phase, in qualitative agreement with experimental findings for some ternary lyotropic liquid mixtures. An annealed distribution, however, which is more adequate to liquid mixtures, precludes the stability of this biaxial phase. We then use a two-temperature formalism, and assume a separation of relaxation times, to show that a partial degree of annealing is already sufficient to stabilize a biaxial nematic structure.Comment: 11 pages, 2 figure
    corecore